Skin dose measurements using radiochromic films, TLDs and ionisation chamber and comparison with Monte Carlo simulation

Saleh Alashrah, Sivamany Kandaiya, Nabil Ahmed, A. El-Taher

Research output: Contribution to journalJournal articlepeer-review

6 Scopus citations

Abstract

Estimation of the surface dose is very important for patients undergoing radiation therapy. The purpose of this study is to investigate the dose at the surface of a water phantom at a depth of 0.007 cm as recommended by the International Commission on Radiological Protection and International Commission on Radiation Units and Measurement with radiochromic films (RFs), thermoluminescent dosemeters and an ionisation chamber in a 6-MV photon beam. The results were compared with the theoretical calculation using Monte Carlo (MC) simulation software (MCNP5, BEAMnrc and DOSXYZnrc). The RF was calibrated by placing the films at a depth of maximum dose (dmax) in a solid water phantom and exposing it to doses from 0 to 500 cGy. The films were scanned using a transmission high-resolution HP scanner. The optical density of the film was obtained from the red component of the RGB images using ImageJ software. The per cent surface dose (PSD) and percentage depth dose (PDD) curve were obtained by placing film pieces at the surface and at different depths in the solid water phantom. TLDs were placed at a depth of 10 cm in a solid water phantom for calibration. Then the TLDs were placed at different depths in the water phantom and were exposed to obtain the PDD. The obtained PSD and PDD values were compared with those obtained using a cylindrical ionisation chamber. The PSD was also determined using Monte Carlo simulation of a LINAC 6-MV photon beam. The extrapolation method was used to determine the PSD for all measurements. The PSD was 15.0±3.6 % for RF. The TLD measurement of the PSD was 16.0±5.0 %. The (0.6 cm3) cylindrical ionisation chamber measurement of the PSD was 50.0±3.0 %. The theoretical calculation using MCNP5 and DOSXYZnrc yielded a PSD of 15.0±2.0 % and 15.7±2.2 %. In this study, good agreement between PSD measurements was observed using RF and TLDs with the Monte Carlo calculation. However, the cylindrical chamber measurement yielded an overestimate of the PSD. This is probably due to the ionisation chamber calibration factor that is only valid in charged particle equilibrium condition, which is not achieved at the surface in the build-up region.

Original languageEnglish
Pages (from-to)338-344
Number of pages7
JournalRadiation Protection Dosimetry
Volume162
Issue number3
DOIs
StatePublished - 1 Dec 2014

Fingerprint

Dive into the research topics of 'Skin dose measurements using radiochromic films, TLDs and ionisation chamber and comparison with Monte Carlo simulation'. Together they form a unique fingerprint.

Cite this