Finite element modelling of the behaviour of a certain class of composite steel-concrete beam-to-column joints

M. A. Gizejowski, W. Barcewicz, wael khlil

Research output: Contribution to journalJournal articlepeer-review

2 Scopus citations


Beam-to-column end-plate joints can be classified as rigid (fully restrained), semi-rigid (partially restrained) or pinned, depending on their type, configuration and the connector arrangement. Fully restrained joints are needed for rigid frames in which, there is assumed that the frame joints have sufficient rigidity to maintain - under the service state - the angles between the intersecting members, ensuring the full moment transfer. In contrast in semi-continuous frames, partially restrained joints are characterized by relative rotations occurring between the intersecting members so that the bending moment can only be transferred partially. In recent years, the idea of using partially restrained, unstiffened joints in building structures has gained momentum since this idea appears to be more practical and economical. Semi-continuous frames can resist actions by the bending moment transfer in partially restrained joints, allowing in the same time for a certain degree of rotation that enhances the overall, ductile performance of these structures. One of the effective ways that affects ductility of end-plate beam-to-column joints is to use thinner end-plates than those used nowadays in practical applications. In the current study, a certain class of steel-concrete composite joints is examined in which the thickness of end-plates is to be equivalent to approximately 40-60% of the bolt diameter used in all the composite joints investigated in the considered joint class. This paper is an extension of the authors' earlier investigation on numerical modelling of the behaviour of steel frame joints. The aim of current investigations is to develop as simple as possible and yet reliable three-dimensional (3D) FE model of the composite joint behaviour that is capable of capturing the important factors controlling the performance of steel-concrete end-plate joints in which the end-plate thickness is chosen to be lesser than that used nowadays in conventional joint detailing. A 3D FE model constructed for composite joints of the considered joint class is reported in this paper and numerical simulations using the ABAQUS computer code are validated against experimental investigations conducted at the Warsaw University of Technology. Comparison between the nonlinear FE analysis and full scale experimental results of the considered class of composite joints is presented which conclusively allows for the accuracy assessment of the modelling technique developed. Comparison between the FE results and test data shows a reasonable agreement between the numerical FE model developed and physical model of experimentally examined joint specimens. Finally, practical conclusions for engineering applications are drawn.

Original languageEnglish
Pages (from-to)19-56
Number of pages38
JournalArchives of Civil Engineering
Issue number1
StatePublished - 2010
Externally publishedYes


  • Composite
  • End-plate
  • Finite element model
  • Inelastic behaviour
  • Joint
  • Nonlinear analysis
  • Steel-concrete


Dive into the research topics of 'Finite element modelling of the behaviour of a certain class of composite steel-concrete beam-to-column joints'. Together they form a unique fingerprint.

Cite this